If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+z-4=0
a = 1; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·1·(-4)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{17}}{2*1}=\frac{-1-\sqrt{17}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{17}}{2*1}=\frac{-1+\sqrt{17}}{2} $
| X^3+1728=x-12 | | 6x-36=3x+53 | | 3-3x-x^2=0 | | 3-2(x-4)=10+3x | | 6x^2-19x+10=10 | | 2x-5(x-5)=-4+3x-19 | | 5-(5x+3)=-7x+4 | | (2n=34) | | 3=7(c-2)+17 | | 7-7x=-x+1 | | x-(.3*x)=100 | | (7y-4)=(-5y+9) | | (-9a+4)=(-3a-10) | | (5x−2)/6+(2−4x)/5=1 | | 4(3x+6)−6(4x−5)=10x+3(4x−9) | | x/19=21/33 | | x=3.3x(1-x) | | 8+12x+2x2+3x3=0 | | 3(y-7)=-27 | | 7w=11 | | 3x^2-7x+1=2x+13 | | 12/3/x=27/9 | | 5y+9-18=0 | | (4x-12)1/2-3=x | | -2+2(4)=-x+2+x | | (-2.4x^2)+1.4=0 | | 2/5(y-1)-9/5=-2 | | 0=-2.4x^2+1.4 | | 6(3x-2)=-19(3-x) | | 272=186-u | | 32^3x-5=8^x-1 | | 3y^2+36y+63=0 |